Molecular mechanisms involved in the synergistic activation of soluble guanylyl cyclase by YC-1 and nitric oxide in endothelial cells.

نویسندگان

  • K Schmidt
  • A Schrammel
  • D Koesling
  • B Mayer
چکیده

YC-1 is a direct activator of soluble guanylyl cyclase (sGC) and sensitizes the enzyme for activation by nitric oxide (NO) and CO. Because the potentiating effect of YC-1 on NO-induced cGMP formation in platelets and smooth muscle cells has been shown to be substantially higher than observed with the purified enzyme, the synergism between heme ligands and YC-1 is apparently more pronounced in intact cells than in cell-free systems. Here, we investigated the mechanisms underlying the synergistic activation of sGC by YC-1 and NO in endothelial cells. Stimulation of the cells with YC-1 enhanced cGMP accumulation up to approximately 100-fold. The maximal effect of YC-1 was more pronounced than that of the NO donor DEA/NO (approximately 20-fold increase in cGMP accumulation) and markedly diminished in the presence of L-N(G)-nitroarginine, EGTA, or oxyhemoglobin. Because YC-1 did not activate endothelial NO synthase, the pronounced effect of YC-1 on cGMP accumulation was apparently caused by a synergistic activation of sGC by YC-1 and basal NO. The effect of YC-1 was further enhanced by addition of DEA/NO, resulting in a approximately 160-fold stimulation of cGMP accumulation. Thus, YC-1 increased the NO-induced accumulation of cGMP in intact cells by approximately 8-fold. Addition of endothelial cell homogenate increased the stimulatory effect of YC-1 on NO-activated purified sGC from 1.2- to 3.7-fold. This effect was not observed with heat-denatured homogenates, suggesting that a heat-labile factor present in endothelial cells potentiates the effect of YC-1 on NO-activated sGC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Release of nitric oxide from endothelial cells stimulated by YC-1, an activator of soluble guanylyl cyclase.

1 In this study we examined the endothelium-dependent effect of YC-1 - a benzyl indazole derivative which directly activates soluble guanylyl cyclase (sGC) - on vascular relaxation and nitric oxide (NO) and guanosine-3',5'-cyclic monophosphate (cyclic GMP) in endothelial cells. 2 In preconstricted rat aortic rings with intact endothelium, YC-1 produced a concentration-dependent relaxation. Howe...

متن کامل

Mechanism of YC-1-induced activation of soluble guanylyl cyclase.

The signaling molecule nitric oxide (NO) mediates many of its effects by the stimulation of soluble guanylyl cyclase (sGC). The activation process is initiated by high-affinity binding of NO to the enzyme's prosthetic heme group. Despite its poor sGC-activating properties, carbon monoxide (CO) has also been suggested as a physiological activator of sGC. Recently, we have shown that the substanc...

متن کامل

Inhibition of phosphodiesterase type 5 by the activator of nitric oxide-sensitive guanylyl cyclase BAY 41-2272.

BACKGROUND By the formation of cGMP, nitric oxide (NO)-sensitive guanylyl cyclase (GC) acts as the effector for the signaling molecule NO and mediates the relaxation of vascular smooth muscle and the inhibition of platelet aggregation. The compounds YC-1 and BAY 41-2272 are regarded as NO-independent activators and sensitizers of NO-sensitive GC. In vivo effects, for example, lowering blood pre...

متن کامل

Soluble guanylyl cyclase activator YC-1 protects white matter axons from nitric oxide toxicity and metabolic stress, probably through Na(+) channel inhibition.

In the rat isolated optic nerve, nitric oxide (NO) activates soluble guanylyl cyclase (sGC), resulting in a selective accumulation of cGMP in the axons. The axons are also selectively vulnerable to NO toxicity. The experiments initially aimed to determine any causative link between these two effects. It was shown, using a NONOate donor, that NO-induced axonal damage occurred independently of cG...

متن کامل

Downregulation of soluble guanylyl cyclase in young and aging spontaneously hypertensive rats.

Endothelial dysfunction, as observed in hypertension and atherosclerosis, is associated with a reduction in the bioavailability of endothelium-derived nitric oxide (NO). We tested the hypothesis that alterations in the soluble guanylyl cyclase (sGC) pathway may also contribute to the pathogenesis of hypertension. Therefore, we investigated the expression and activity of sGC in young (6 weeks) a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 59 2  شماره 

صفحات  -

تاریخ انتشار 2001